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Abstract: A robot with a flexible arm that is controlled with a remotely operated water-pressure mechanism has been 

developed for dismantling objects that are heavily contaminated by radioactive materials during decommissioning of nuclear 

power plants. The objective of this research is to develop a process planning support system and method that can improve the 

accuracy of estimating the time required by the robot to complete its dismantling activity, support recovery from delays, and 

determine the feasibility of conducting a dismantling process in the reactor building. Since the flexible arm has a more 

complex mechanism and shapes those that of multi-axis robots, unique movable arm structures were modeled with a tool for 

three-dimensional (3D) computer graphics (CG) technology. The 3D CG model was used to make valid operation sequences 

for planning the motion of the robot. With the help of a prototype system, motion planning can perform to calculate the 

duration needed for the robot to complete its operation. The calculated duration is then used for updating the planned duration 

of a specific activity in a dismantling schedule. To plan the robot behaviors for complex dismantling processes, a simplified 

planning method with few virtual controllers based on a spline inverse kinematics (IK) with a non-uniform rational B-spline 

(NURBS) curve for an arm comprised of pistons and cylinders pressurized by water was studied. A prototype system for 

planning the behaviors of the robot was evaluated, and it was confirmed that the movement trajectory of the robot and the 

three-dimensional isometric display could be visualized using the mesh model generated from point-cloud data used to make 

the environment model of the robot. It was also confirmed that the operations involved in a specific activity of the robot could 

be completed within the duration determined in the simulation. 

Keywords: Decommissioning, Computer Graphics, Forward Kinematics, Inverse Kinematics,  

Non-Uniform Rational B-Spline (NURBS) Curve 

 

1. Introduction 

In current decommissioning projects for high dose-rate 

areas in nuclear power plants (NPPs), it is necessary to 

reduce occupational exposure for workers; thus, portions of 

dismantling work must be done with remotely operated 

robots. It is necessary to dismantle radioactive waste safely 

and economically: amounts of such waste are estimated to be 

3.6% by weight in commercial reactors [1]. Since the number 

of NPP decommissioning projects is likely to increase in the 

future, the development of robotic dismantling technology is 

becoming more important. The results of a cost analysis of 

NPP decommissioning projects show that cutting and 

dismantling account for a large portion of the cost [2]. So far, 

a system that visualizes calculated radiation dose rates in a 

virtual reality (VR) environment has been developed for 

mitigating high dose-rate environments inside an NPP [3]. 

Dose-rate distributions can be calculated with high accuracy 

based on the geometry of the facility, materials, and 

radioactive sources [4]. Moreover, computer simulations of 

the processes of cutting equipment and waste generation have 

been developed [5, 6]. In particular, the amount of waste 

generated can be predicted accurately on a volumetric basis 
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by using 3D CAD models [7, 8]. 

The radiation resistance of the devices making up the robot 

is an important issue. To address this issue, we have developed 

a robot arm with a flexible structure and a hydraulic drive 

mechanism. Since the flexible arm does not have an electronic 

controlling mechanism in the robot’s body, it has high 

resistance to radiation [9]. This kind of robot was described in 

a survey paper on soft robotic manipulators, which analyzed 

structures ranging from multi-axis arms to redundant 

multi-axis arms, as well as arms with many joints and arms 

that can bend continuously like living organisms [10]. The 

flexible arm developed by Hitachi is positioned between a 

redundant multi-axis arm and an arm with many joints. 

Autonomous and/or teleoperated control of robots in a 

certain environment was simulated with Unity 3D virtual 

reality software and MATLAB using shared memory for 

real-time feedback [11]. A dual-manipulator mobile robotic 

system was developed for nuclear decommissioning and 

inverse kinematics was used for controlling the system [12]. 

In particular, a multi-objective genetic algorithm was used to 

stabilize the motion of robots through inverse kinematics [13]. 

Visualizations of the motions of robots were simulated by an 

automated generation of the kinematics equations of the 

robots and analytical solving their motion planning equations 

subject to time-varying constraints, behavioral objectives, 

and modular configuration [14]. 

Section 2 below describes the issues to be resolved and the 

objectives of this research. Section 3 describes a CG robot 

model that is suitable for the visualization of kinematics. The 

methods for simulating robots with flexible arms in real-time 

are described in section 4, and the results of simulations are 

discussed in section 5. Section 6 is the conclusion. 

2. Issues to Be Resolved and Objectives 

of the Research 

The high dose rates encountered during decommissioning 

of NPPs have made it essential to deploy remotely operated 

robots. Here, it is important to plan how long it will take for a 

robot to perform the desired actions, such as cutting and 

removing obstacles or operating a manual valve handle on 

behalf of a human, in an environment that is similar to the 

worksite. In addition, when operating in the field, it is 

necessary to check whether the robot operates without 

collisions in an environmental 3D model that is created in 

advance of its operation. The following functions are required 

for a real-time robot simulation to meet these requirements 

(Figure 1 depicts them as a system configuration). 

We have developed a function to import designed 3D 

models and point cloud data measured in the field and 

incorporate them in an environmental model for a VR 

simulator. 

Simulation of kinematics to calculate the coordinates of 

the robot's crawler and the rotation angles of arm joints by 

the operation commands in the VR environment, or a 

function to visualize the posture and motion of the actual 

robot in real-time. 

Calculation of the duration needed to complete an activity 

on schedule that is based on the results of a VR simulation. 

 

Figure 1. System configuration of real-time robot simulation. 

3. Building a Robot CG Model Suitable 

for Visualization of Kinematics 

3.1. Requirements for Real-Time Robot Simulation 

This paper describes the research and development of an 

execution-time calculation of a single task using the VR 

environment described in (a) and the robot VR simulation 

described in (b) above. For the VR environment, it is 

necessary to address the following technical issues. 

An efficient and rapid method for generating shape models 

that accurately reproduces in-situ 3D measurement data. 

Determination of the usage conditions under which the 

models are generated, and the screen is updated with the 

complexity of the model, which depends on the upper limit of 

the number of constituent polygon meshes, so that the robot 

can be used interactively in a VR environment without a time 

delay. 

In addition, the following technical issue regards the robot 

VR simulation function. 

Development of a simple method to determine the robot's 

movable space and operation time. 

Previous studies have investigated these issues and have set 

forth a development strategy [15]. When decommissioning an 

NPP, there are places where equipment and piping are not 

modeled in 3D CAD data. It is not always possible to prepare a 

VR environment in advance that matches the on-site 

conditions. 

As for the geometric shape model in (a), mesh models can 
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be created from 3D measured point cloud data. The 3D point 

cloud data contain errors, and a method called corner-aware 

neighborhood (CAN) is used to generate a smoothed mesh 

shape in which the errors are suppressed by taking the normal 

vectors near the corners of the object [16]. However, this 

method cannot be used for plant and piping components 

whose shapes change significantly. In this research, we 

developed a method to connect meshes based on the similarity 

of normal vectors to mesh planes generated from neighboring 

point-cloud data to reproduce equipment and piping shapes. 

The real-time usage conditions of the VR environment in (b) 

are described using Unity, a widely used VR software 

development tool [17]. Here, a mobile device can handle a 

mesh model with no more than 10
5
 vertices, while a PC can 

handle a model with no more than 10
6
 vertices. 

We decided to express the geometric shape with fewer 

meshes than the upper limit for PCs so that we could use 

real-time processing. 

A previous study examined a simple method of evaluating 

the robot's operational space and operation time (c); in 

particular, it studied how to automatically plan the movement 

route of the robot based on a self-position estimation on a 3D 

map [18]. However, the resulting plans of that method cannot 

account for complex operations such as the removal of 

obstructing objects or the opening and closing of valves. 

Hence, to ensure that the robot is operated in a way that 

conforms to the physical constraints of its environment, we 

devised a real-time collision checking process. 

3.2. Controlling Postures of Flexible Arms with a Spline IK 

Method 

To check collisions operation in the confined 

three-dimensional environment of a plant, it is necessary to 

recreate the detailed motions of each part of the robot. Figure 

2 is an enlarged picture of the flexible arm parts of the robot. 

The arm parts are supported by plate springs made of metal 

and are reinforced so that the initial state is a posture on a 

straight line. Inside the plate spring, pistons are attached to 

the joints. The direction in which the piston is compressed or 

expanded is controlled by the pressure of the water in the 

cylinder, and the movements of the individual pistons affect 

the flexible posture of the entire arm. To estimate the posture 

of the individual parts from the overall movement, a virtual 

joint structure called a rig was created, and the states of 

components such as pistons were calculated and visualized. 

 

Figure 2. Image of robot with piston movements enabled by water pressure. 

Inverse kinematics (IK) was used to accurately simulate 

the robot's behavior and to make it easy to operate. To 

simplify the discussion of the problem, a case where the 

behavior of each joint is simulated in a two-dimensional 

plane by calculating backward from the target position of the 

robot's hand in the case of a joint arm is shown in Figure 3. 

 

Figure 3. Determination of angles from the location of the end-effector of an 

arm composed of two links. 

We assume that an arm has two links of length L1 and L2 and 

that the links are connected at angles θ1 and θ1 + θ2 to the 

X-axis. The relationship between the time variation of the 

hand coordinates (X, Y) and the rotation angles of each joint 

(θ1, θ2) can be expressed as in equation (1), where their time 

derivatives of the individual coordinates are represented as 

dots. 

����� � � ��� cos �� 
 �� cos��� 
 ��� �� cos��� 
 ����� sin �� 
 �� sin��� 
 ��� �� sin��� 
 ���� �
������ � (1) 

If ����� �  is expressed as ��  and ������� �  as �� , the rotation 

angle of each joint can be obtained from the hand position, as 

shown in equation (2). 

����� � ��                 (2) 

The matrix J shown in equation (3) is Jacobian, and to find 

the inverse matrix J
-1

, we need to find its determinant det(J) 

and calculate equation (4). 

� � ��� cos �� 
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 ����  (4) 

When det(J) = 0, the relationship is as in equation (5). 

���� sin �� � 0               (5) 

The values of θ2 that satisfy this condition are 0° and 180° 

and called the singular posture. Namely, when L1 and L2 

form a straight line, IK cannot be used to control the arm. In 

the case of a normal multi-axis robot, the joints are slightly 

tilted in the direction of bending to avoid a singular posture. 
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However, in the case of the flexible arm used here, the initial 

posture is in a straight line, and the angle of each joint cannot 

be calculated with the usual IK. For this reason, a spline IK 

solver [19], in which the motion of the arm follows a 

non-uniform rational B-spline (NURBS) curve represented 

by the CG function to define the smooth shape, is used to 

represent the flexible arm bending angle. This enables the 

simulation of free bending of the arm in three dimensions by 

matching the joints on the NURBS curve. We decided to use 

it for the first time in the simulation of flexible arms. 

The NURBS curve has the feature of determining the 

shape by using multiple control points, as shown in Figure 4. 

The curve is represented by a polynomial expression that 

follows the definition of a B-spline basis function, where the 

point closest to the control point is affected on the curve. 

Therefore, if the control point is an element, called a 

controller, for rotating the joints of the robot arm, the arm can 

be freely bent in three dimensions, unlike the method using 

IK, where the angle is strictly specified, and singular postures 

are avoided. The spline IK solver specifies the start and 

endpoints of a NURBS curve and makes each control point 

follow the movement of the endpoint. Although the solver is 

not a feature of conventional robot simulation tools, it is 

incorporated in several CG tools, so we decided to use it for 

planning the robot's posture instead of the usual IK. 

 

Figure 4. Sample curve drawn by NURBS for the spline IK method. 

4. Real-Time Simulation of Robots with 

Flexible Arms 

4.1. Building Environmental Mesh Objects from 3D 

Point-Cloud Data 

If the results of 3D measurements can be imported into the 

VR environment on the fly, the efficiency of preparing 

environmental models for remote operation support can be 

improved. Here, a method for generating a mesh model for a 

VR environment in a few minutes in the field was developed 

based on 3D measured point-cloud data. Figure 5 shows the 

point cloud obtained from 3D measurements conducted in a 

test space enclosed by partitions that were used to verify the 

operation of the robot in a narrow area. It is necessary to 

subsample the point cloud to the order of 10
6
 points because 

of the constraints of the development tool on its use in 

real-time in the VR environment. The figure compares the 

raw (total) point cloud data consisting of (a) 2x10
7
 points and 

(b) 1x10
6
 subsampled data points. Shapes common to both 

figures appear, but there is a gap between the points in the 

data of (b) such that the wall seems transparent. Therefore, it 

is necessary to generate a mesh model of the wall to prevent 

the other side from being seen when the robot is close to it 

and performs a collision check. 

 

Figure 5. Comparison between raw and sub-sampled point-cloud data for 

mesh modeling. 

A method to enlarge the faces of the mesh model is as 

follows: select three points and connect them with 

corresponding edges to form a face. Faces with similar normal 

vectors to those of adjacent faces are consolidated (Figure 6). 

To generate a mesh model, points of interest are selected from 

the point-cloud data (S-1). N points around the point of 

interest are chosen (S-2). For the chosen surrounding points, a 

weighting factor is given according to its distance from the 

point of interest (S-3). Then a face of the triangular mesh is set 

around the point of interest with maximum angle θt, max, and 

minimum angle θt, min (S-4). After the faces are generated, the 

normal vectors of the faces are calculated (S-5), and if the 

angle θn between two normal vectors is less than θn, max, the 

two normal vectors are considered similar, and the surfaces 

are merged (S-6). The above process is iterated to the 

maximum number of point-cloud data (S-7). 

 

Figure 6. Flowchart of modeling mesh from point-cloud data. 

4.2. Visualization of Moving Postures for Flexible Arms in a 

Virtual Reality Environment 

A CG model of a robot was created using a commercially 

available CG tool (Maya, Autodesk Inc. [20]). In Figure 7, 

the metal plate springs that cover the flexible arms are 

removed, and the internal structure is illustrated. There are 

sets of hydraulically driven pistons. Each set consists of four 

pistons and cylinders and tubes that inject and discharge 

water. The flexible arm can be bent in three dimensions by 

adjusting the amount of water injected into the cylinders. 
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Points on 
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Each arm set can be bent up to 45 degrees relative to each of 

the x-, y-, and z-axes. Since the arm consists of an upper part 

and a forearm, it can bend up to 90 degrees relative to each 

axis. Therefore, by using a simple operation method with the 

spline IK solver, each piston is set to bend to the average of 

up to 45 degrees, and the ball joints connect pistons to bend 

two parts before and after each joint, it sets the constraint to 

be bent upwards to 22.5 degrees in each piston alone. 

 

Figure 7. Simulation of movement for pistons and water tubes in the flexible 

arm. 

4.3. Collision Detection of Arms Objects with Environmental 

Meshes 

Figure 8 shows the model used to check for collisions 

between the robot and objects in the area that it will be 

working in. A real-time physics computation engine 

(open-source NVIDIA PhysX) is used for checking collisions 

[21]. Mesh with a geometric shape, called a mesh collider (the 

green wire frame part of the diagram) is used for detecting 

collision events. We decided that the mesh collider should be 

composed of simple geometric shapes to reduce the colliding 

portions and events because the processing becomes heavy 

when the mesh of the colliding body precisely matches the 

shape of part of the robot. Moreover, the robot’s mesh collider 

was displaced 10 mm upward relative to the floor plane 

because the floor surface generated from the measured 3D 

point cloud data has an error of about several millimeters, and 

if the mesh collider remains in continuous contact with the 

floor, a state of collision persists. This robot VR application 

can be used for calculating the duration of the operation for the 

robot as well as recognizing the self-position of the actual 

robot from various three-dimensional views. 

 

Figure 8. Geometric shapes for detecting collisions with a mesh collider 

based on PhysX engine. 

The relationship between the CG model of the robot and the 

operational parts is shown in Figure 9. The flexible arm and 

column can move relative to the chassis of the robot as follows: 

swing 1 moves the column upwards through an angle, turn 1 

rotates swing 1, swing 2 moves the flexible arm downwards 

through an angle, swing 3 moves the hand end effector 

downwards through an angle, suspension contracts the 

hand-end effector, and turn 2 rotates the hand end effector. 

These operational parts of the arm can be bent up to 90 

degrees in four directions (bend_up, bend_down, bend_left, 

and bend_right). 

 

Figure 9. Parameters for operating the robot with a flexible arm. 

5. Results and Discussion 

5.1. Generating a Mesh Model from a Point-Cloud 

As mentioned in section 4.1, the maximum number of 

meshes should be limited to 10
6
 for a VR simulation to be 

carried out in real-time. To confirm this condition is 

practically achievable, the quality of the generated mesh 

models was evaluated in comparison with the processing time 

to generate the model. 

An example of a mesh model generated from the point 

cloud data is shown in Figure 10. Figure 10 (a) shows the 

registration results of point-cloud data obtained by 3D laser 

scanning of three locations in a field test. It consists of 2.7x10
7
 

points. Figures 10 (b) and (c) show mesh models obtained 

from 10
6
 and 10

7
 of those points. In these models, the meshes 

of the wall do not appear transparent as the red cone in Figure 

10 (a) when the robot is close to the obstacle and can be 

visualized as an obstacle. The number of mesh faces in each 

case is 1.9x10
6
 and 1.8x10

7
, and it is easy to see that the 

surfaces match those in the raw data. 

 

Figure 10. Comparison of mesh models and corresponding point cloud data. 

Figure 11 shows the time it takes to generate the mesh model 

from the point cloud data. It took 2 minutes to complete the 
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processing of 10
6
 points that were sub-sampled from the raw 

point-cloud data. When 10
5
 points were obtained by the laser 

range finder (LRF) mounted on the robot, the model was 

completed in 20 seconds. When 10
7
 points were used, it took 6 

hours to make the model. Therefore, the processing time 

increased in proportion to the square of the number of points. 

If processing data can be done offline, 10
7
 points could be used, 

and it would be possible to simulate in an environment model 

made of relatively smooth geometric shapes. However, in the 

field, it would be desirable to capture the mesh model within a 

few minutes of making a 3D measurement. Therefore, we 

consider that 10
6
 points of point-cloud data are a practical limit 

regarding the processing time of the mesh model. 

 

Figure 11. Relationship between mesh model size from point-cloud data and 

its generation time. 

The screen update speed of the simulation was verified in 

the case of using a mesh model generated from large-scale 

point-cloud data. The verification used a PC equipped with an 

Intel Xeon ES-2603, 1.6 GHz 2CPU. The VR simulation of 

the mesh model generated from 10
7
 points had a screen update 

speed of 1-2 frames per second; thus, a mesh model of this size 

is not suitable for real-time operation. It is said that the screen 

update speed for real-time operation should be 30 frames per 

second or more. When the mesh model was generated from 

10
6
 points, the screen update speed in the VR simulation was 

60 frames per second. Consequently, 10
6
 point-cloud data was 

determined to be adequate for the VR simulation. 

If the number of points is decreased, the geometric shape of 

the resulting mesh model will be of inferior quality, as shown in 

Figure 10 (b). We thought that the quality of the geometric 

shapes could be improved by adjusting the parameters when the 

mesh is generated. Figure 12 shows the relationship between 

the number of meshes generated with Ks points to be searched 

in the vicinity of the point of interest at the time of calculation 

and the number of generated faces. The characteristics of a cone 

mesh model were examined for various values of Ks. The 

diameter of the bottom of the conical shape was 278 mm and it 

corresponds to the maximum size of small-bore piping 

components that would be cut and removed during 

decommissioning. Therefore, the cone was a reasonable size for 

this evaluation. Ks is a parameter that determines the 

complexity of the mesh shape that can be generated in the 

vicinity of a particular point. The number of generated 

geometric faces tends to increase as Ks increases, but the growth 

rate tends to saturate beyond a certain value of Ks. This 

tendency appears when there are fewer points in the 

neighborhood, and the resulting shape depends greatly on 

which points are chosen. When Ks is 20, the cone appears 

incomplete with numerous fractures. When Ks is 50 and 100, 

the cone is more complete and has fewer fractures. Moreover, it 

is not efficient to increase this Ks more than necessary; it takes 

18 minutes or more when Ks is 1000 but only 4 minutes when 

Ks is 100. Thus, Ks should be set from 50 to 100 to generate 

mesh models of equipment or piping components with many 

changes in the generated shapes. With the developed method, 

we confirmed that it connects meshes based on the similarity of 

normal vectors to mesh planes generated from neighboring 

point-cloud data to reproduce equipment and piping shapes 

compared with the previous study [16]. 

 

Figure 12. Quality of generated meshes. 

5.2. Checking the Collision Detection Function of the Robot 

in the Mesh Model 

Figure 13 shows the superimposed movement locus of the 

center coordinates of the crawler as blue points on the 

point-cloud data. The white square on the floor shows an area of 

80 cm × 80 cm. This VR application can be used to confirm the 

coordinates 180 seconds after arrival at the endpoint of the 

center of the crawler, and 20 seconds after the start of the 

movement. Moreover, it can be used to confirm the posture of 

the robot with the 3D isometric display. Therefore, the collision 

detection function enables users to confirm the postures of the 

robot even if the camera views are occluded by obstacles. 

 

Figure 13. Trajectory of the robot in the field test. 

Figure 14 shows how the robot hand detects rubble and its 
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contact situation. The situation at the moment of contacting 

the rubble was able to be detected from the posture. When a 

collision event was detected, the amount of processing 

temporarily increased; consequently, the screen was updated 

at about 30 frames per second, i.e., about half that of a 

situation with no collision. Therefore, it was found that 60 

frames per second or more is a desirable update speed when no 

collision occurs. With the developed method, we confirmed 

that it connects meshes based on the similarity of normal 

vectors to mesh planes generated from neighboring 

point-cloud data to reproduce equipment and piping shapes 

compared with the previous study [16]. 

 

Figure 14. Example posture of robot with flexible arm avoiding collisions 

against obstacles. 

5.3. Evaluation of Moving Time of the Robot 

 

Figure 15. Recorded time of the movement and the changes in angle of the 

flexible arm of the robot. 

Figure 15 shows the recorded times of movements and 

changes in the angle of the flexible arm. By changing the angle 

of the arm (swing 1 to swing 3, bend_left, up, down, and right) 

at a rate of 10 degrees per second, the manual operation took 

130 seconds to grasp and remove rubble. It took a total of 13 

operation steps to contact the rubble from the moment that the 

rubble was recognized, and the operator completed the 

movements (while looking at the screen) about three times 

faster than the actual robot’s operation. This means that the 

planned operation can be checked more quickly with the VR 

application than with the actual robot hardware in a mockup 

field test. In addition, the difference between the start and the 

end of a series of operations can be assigned as the duration of 

the actual scheduled activity. 

The mesh is very coarse when the number of points is small, 

as shown in Figure 10 (b), because the normal vectors of the 

triangular mesh formed by the edge between points and the 

surface are not smoothed or optimized in the VR environment. 

The simulation in the VR environment used such a coarse 

mesh model because its purpose was to detect collision events. 

In contrast, more detailed simulations that incorporate the 

mechanical stability of the center of gravity of the robot on 

unstable surfaces, lifting of the object to be removed, and 

dynamics such as multi-legged walking will require more 

sophisticated processing such as smoothing of the mesh, 

repairing splits in the mesh surface, or replacing the 

point-cloud based mesh with a 3D CAD model. In the future, 

we will build mesh models that can be used for dynamics 

simulations. In addition, we will use the calculated duration in 

this VR environment as input for the schedule optimization 

system. In this way, we will develop a schedule optimization 

technology that checks and updates the duration of an activity 

in the planned schedule corresponding to various operating 

scenarios. 

6. Conclusions 

A support system of a robot operated remotely for high 

dose-rate environments plays a crucial role during 

decommissioning of NPPs. Before deploying 

remote-controlled robots to a site, it is necessary to confirm 

that the operation plans are safe and efficient. In this research, 

we developed the technology necessary to calculate the 

working duration by checking that the robot operates without 

colliding with obstacles, such as equipment and piping 

components on floors and walls, in a virtual environment made 

of a mesh model built from 3D point-cloud measurements. 

A method that enlarges face surfaces was investigated to 

generate mesh models efficiently. It generates triangular by 

selecting three points for each face and consolidating nearest 

surfaces which have normal vectors in similar directions as 

one face. The appropriate number of point cloud data and 

parameters used for generating mesh models were evaluated 

by examining the quality of the generated mesh model as 

well as the processing time. As for the point cloud data, a 5 m 

x 5 m test field enclosed by partitions for testing the 

behaviors of the robot in a narrow space was measured with a 

3D scanner. 

As a result of the evaluation, it was decided to generate 

mesh models from point cloud data consisting of 10
6
 points, 

with which the operator’s screen can be refreshed at 60 

frames or more per second. The number of points to be 

searched in the vicinity of a point of interest should be set 

from 50 to 100 for generating faces with fewer cracks. In this 

case, the calculation time was less than two minutes. 

As for detecting collisions, a CG model of a robot with a flexible 

arm was made and collisions with obstacles were detected by 
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simplifying the mesh shapes including that of the robot. 

With the developed functions, we confirmed that the 

movement trajectory of the robot and a three-dimensional 

isometric display from an arbitrary camera angle can be 

visualized by using the mesh model as the environment model 

of the robot. In addition, we confirmed that the moment of 

contact with rubble can be detected and displayed. The speed 

at which the user operates while looking at the screen is faster 

than the actual robot's angular change. By using this VR 

application instead of an actual hardware robot, work planning 

can be substantially shortened. The difference between the 

start and end times of a series of operations conducted in the 

VR environment can be scheduled as the duration of the actual 

working activity. 
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