

International Journal of Mechanical Engineering and Applications
2021; 9(6): 90-97

http://www.sciencepublishinggroup.com/j/ijmea

doi: 10.11648/j.ijmea.20210906.12

ISSN: 2330-023X (Print); ISSN: 2330-0248 (Online)

Real-time Simulation Methods for Robots with a Flexible
Arm Based on Computer Graphics Technology

Hiroshi Seki
1, *

, Katsunori Ueno
2
, Katsuhiko Hirano

2

1Research and Development Group, Hitachi, Ltd., Hitachi-shi, Japan
2Nuclear Engineering and Product Division, Hitachi-GE Nuclear Energy, Ltd., Hitachi-shi, Japan

Email address:

*Corresponding author

To cite this article:
Hiroshi Seki, Katsunori Ueno, Katsuhiko Hirano. Real-time Simulation Methods for Robots with a Flexible Arm Based on Computer Graphics

Technology. International Journal of Mechanical Engineering and Applications. Vol. 9, No. 6, 2021, pp. 90-97.

doi: 10.11648/j.ijmea.20210906.12

Received: October 26, 2021; Accepted: November 23, 2021; Published: December 2, 2021

Abstract: A robot with a flexible arm that is controlled with a remotely operated water-pressure mechanism has been

developed for dismantling objects that are heavily contaminated by radioactive materials during decommissioning of nuclear

power plants. The objective of this research is to develop a process planning support system and method that can improve the

accuracy of estimating the time required by the robot to complete its dismantling activity, support recovery from delays, and

determine the feasibility of conducting a dismantling process in the reactor building. Since the flexible arm has a more

complex mechanism and shapes those that of multi-axis robots, unique movable arm structures were modeled with a tool for

three-dimensional (3D) computer graphics (CG) technology. The 3D CG model was used to make valid operation sequences

for planning the motion of the robot. With the help of a prototype system, motion planning can perform to calculate the

duration needed for the robot to complete its operation. The calculated duration is then used for updating the planned duration

of a specific activity in a dismantling schedule. To plan the robot behaviors for complex dismantling processes, a simplified

planning method with few virtual controllers based on a spline inverse kinematics (IK) with a non-uniform rational B-spline

(NURBS) curve for an arm comprised of pistons and cylinders pressurized by water was studied. A prototype system for

planning the behaviors of the robot was evaluated, and it was confirmed that the movement trajectory of the robot and the

three-dimensional isometric display could be visualized using the mesh model generated from point-cloud data used to make

the environment model of the robot. It was also confirmed that the operations involved in a specific activity of the robot could

be completed within the duration determined in the simulation.

Keywords: Decommissioning, Computer Graphics, Forward Kinematics, Inverse Kinematics,

Non-Uniform Rational B-Spline (NURBS) Curve

1. Introduction

In current decommissioning projects for high dose-rate

areas in nuclear power plants (NPPs), it is necessary to

reduce occupational exposure for workers; thus, portions of

dismantling work must be done with remotely operated

robots. It is necessary to dismantle radioactive waste safely

and economically: amounts of such waste are estimated to be

3.6% by weight in commercial reactors [1]. Since the number

of NPP decommissioning projects is likely to increase in the

future, the development of robotic dismantling technology is

becoming more important. The results of a cost analysis of

NPP decommissioning projects show that cutting and

dismantling account for a large portion of the cost [2]. So far,

a system that visualizes calculated radiation dose rates in a

virtual reality (VR) environment has been developed for

mitigating high dose-rate environments inside an NPP [3].

Dose-rate distributions can be calculated with high accuracy

based on the geometry of the facility, materials, and

radioactive sources [4]. Moreover, computer simulations of

the processes of cutting equipment and waste generation have

been developed [5, 6]. In particular, the amount of waste

generated can be predicted accurately on a volumetric basis

 International Journal of Mechanical Engineering and Applications 2021; 9(6): 90-97 91

by using 3D CAD models [7, 8].

The radiation resistance of the devices making up the robot

is an important issue. To address this issue, we have developed

a robot arm with a flexible structure and a hydraulic drive

mechanism. Since the flexible arm does not have an electronic

controlling mechanism in the robot’s body, it has high

resistance to radiation [9]. This kind of robot was described in

a survey paper on soft robotic manipulators, which analyzed

structures ranging from multi-axis arms to redundant

multi-axis arms, as well as arms with many joints and arms

that can bend continuously like living organisms [10]. The

flexible arm developed by Hitachi is positioned between a

redundant multi-axis arm and an arm with many joints.

Autonomous and/or teleoperated control of robots in a

certain environment was simulated with Unity 3D virtual

reality software and MATLAB using shared memory for

real-time feedback [11]. A dual-manipulator mobile robotic

system was developed for nuclear decommissioning and

inverse kinematics was used for controlling the system [12].

In particular, a multi-objective genetic algorithm was used to

stabilize the motion of robots through inverse kinematics [13].

Visualizations of the motions of robots were simulated by an

automated generation of the kinematics equations of the

robots and analytical solving their motion planning equations

subject to time-varying constraints, behavioral objectives,

and modular configuration [14].

Section 2 below describes the issues to be resolved and the

objectives of this research. Section 3 describes a CG robot

model that is suitable for the visualization of kinematics. The

methods for simulating robots with flexible arms in real-time

are described in section 4, and the results of simulations are

discussed in section 5. Section 6 is the conclusion.

2. Issues to Be Resolved and Objectives

of the Research

The high dose rates encountered during decommissioning

of NPPs have made it essential to deploy remotely operated

robots. Here, it is important to plan how long it will take for a

robot to perform the desired actions, such as cutting and

removing obstacles or operating a manual valve handle on

behalf of a human, in an environment that is similar to the

worksite. In addition, when operating in the field, it is

necessary to check whether the robot operates without

collisions in an environmental 3D model that is created in

advance of its operation. The following functions are required

for a real-time robot simulation to meet these requirements

(Figure 1 depicts them as a system configuration).

We have developed a function to import designed 3D

models and point cloud data measured in the field and

incorporate them in an environmental model for a VR

simulator.

Simulation of kinematics to calculate the coordinates of

the robot's crawler and the rotation angles of arm joints by

the operation commands in the VR environment, or a

function to visualize the posture and motion of the actual

robot in real-time.

Calculation of the duration needed to complete an activity

on schedule that is based on the results of a VR simulation.

Figure 1. System configuration of real-time robot simulation.

3. Building a Robot CG Model Suitable

for Visualization of Kinematics

3.1. Requirements for Real-Time Robot Simulation

This paper describes the research and development of an

execution-time calculation of a single task using the VR

environment described in (a) and the robot VR simulation

described in (b) above. For the VR environment, it is

necessary to address the following technical issues.

An efficient and rapid method for generating shape models

that accurately reproduces in-situ 3D measurement data.

Determination of the usage conditions under which the

models are generated, and the screen is updated with the

complexity of the model, which depends on the upper limit of

the number of constituent polygon meshes, so that the robot

can be used interactively in a VR environment without a time

delay.

In addition, the following technical issue regards the robot

VR simulation function.

Development of a simple method to determine the robot's

movable space and operation time.

Previous studies have investigated these issues and have set

forth a development strategy [15]. When decommissioning an

NPP, there are places where equipment and piping are not

modeled in 3D CAD data. It is not always possible to prepare a

VR environment in advance that matches the on-site

conditions.

As for the geometric shape model in (a), mesh models can

92 Hiroshi Seki et al.: Real-time Simulation Methods for Robots with a Flexible

Arm Based on Computer Graphics Technology

be created from 3D measured point cloud data. The 3D point

cloud data contain errors, and a method called corner-aware

neighborhood (CAN) is used to generate a smoothed mesh

shape in which the errors are suppressed by taking the normal

vectors near the corners of the object [16]. However, this

method cannot be used for plant and piping components

whose shapes change significantly. In this research, we

developed a method to connect meshes based on the similarity

of normal vectors to mesh planes generated from neighboring

point-cloud data to reproduce equipment and piping shapes.

The real-time usage conditions of the VR environment in (b)

are described using Unity, a widely used VR software

development tool [17]. Here, a mobile device can handle a

mesh model with no more than 10
5
 vertices, while a PC can

handle a model with no more than 10
6
 vertices.

We decided to express the geometric shape with fewer

meshes than the upper limit for PCs so that we could use

real-time processing.

A previous study examined a simple method of evaluating

the robot's operational space and operation time (c); in

particular, it studied how to automatically plan the movement

route of the robot based on a self-position estimation on a 3D

map [18]. However, the resulting plans of that method cannot

account for complex operations such as the removal of

obstructing objects or the opening and closing of valves.

Hence, to ensure that the robot is operated in a way that

conforms to the physical constraints of its environment, we

devised a real-time collision checking process.

3.2. Controlling Postures of Flexible Arms with a Spline IK

Method

To check collisions operation in the confined

three-dimensional environment of a plant, it is necessary to

recreate the detailed motions of each part of the robot. Figure

2 is an enlarged picture of the flexible arm parts of the robot.

The arm parts are supported by plate springs made of metal

and are reinforced so that the initial state is a posture on a

straight line. Inside the plate spring, pistons are attached to

the joints. The direction in which the piston is compressed or

expanded is controlled by the pressure of the water in the

cylinder, and the movements of the individual pistons affect

the flexible posture of the entire arm. To estimate the posture

of the individual parts from the overall movement, a virtual

joint structure called a rig was created, and the states of

components such as pistons were calculated and visualized.

Figure 2. Image of robot with piston movements enabled by water pressure.

Inverse kinematics (IK) was used to accurately simulate

the robot's behavior and to make it easy to operate. To

simplify the discussion of the problem, a case where the

behavior of each joint is simulated in a two-dimensional

plane by calculating backward from the target position of the

robot's hand in the case of a joint arm is shown in Figure 3.

Figure 3. Determination of angles from the location of the end-effector of an

arm composed of two links.

We assume that an arm has two links of length L1 and L2 and

that the links are connected at angles θ1 and θ1 + θ2 to the

X-axis. The relationship between the time variation of the

hand coordinates (X, Y) and the rotation angles of each joint

(θ1, θ2) can be expressed as in equation (1), where their time

derivatives of the individual coordinates are represented as

dots.

����� � � ��� cos ��
 �� cos���
 ��� �� cos���
 ����� sin ��
 �� sin���
 ��� �� sin���
 ���� �
������ � (1)

If ����� � is expressed as �� and ������� � as �� , the rotation

angle of each joint can be obtained from the hand position, as

shown in equation (2).

����� � �� (2)

The matrix J shown in equation (3) is Jacobian, and to find

the inverse matrix J
-1

, we need to find its determinant det(J)

and calculate equation (4).

� � ��� cos ��
 �� cos���
 ��� �� cos���
 ����� sin ��
 �� sin���
 ��� �� sin���
 ���� (3)

��� � �
���	��� � ��sin���
 ��� ��� cos���
 ������ sin �� � �� sin���
 ��� �� cos ��
 �� cos���
 ���� (4)

When det(J) = 0, the relationship is as in equation (5).

���� sin �� � 0 (5)

The values of θ2 that satisfy this condition are 0° and 180°

and called the singular posture. Namely, when L1 and L2

form a straight line, IK cannot be used to control the arm. In

the case of a normal multi-axis robot, the joints are slightly

tilted in the direction of bending to avoid a singular posture.

L1

L2

θ1

θ1

θ2

(X, Y)

x

y

 International Journal of Mechanical Engineering and Applications 2021; 9(6): 90-97 93

However, in the case of the flexible arm used here, the initial

posture is in a straight line, and the angle of each joint cannot

be calculated with the usual IK. For this reason, a spline IK

solver [19], in which the motion of the arm follows a

non-uniform rational B-spline (NURBS) curve represented

by the CG function to define the smooth shape, is used to

represent the flexible arm bending angle. This enables the

simulation of free bending of the arm in three dimensions by

matching the joints on the NURBS curve. We decided to use

it for the first time in the simulation of flexible arms.

The NURBS curve has the feature of determining the

shape by using multiple control points, as shown in Figure 4.

The curve is represented by a polynomial expression that

follows the definition of a B-spline basis function, where the

point closest to the control point is affected on the curve.

Therefore, if the control point is an element, called a

controller, for rotating the joints of the robot arm, the arm can

be freely bent in three dimensions, unlike the method using

IK, where the angle is strictly specified, and singular postures

are avoided. The spline IK solver specifies the start and

endpoints of a NURBS curve and makes each control point

follow the movement of the endpoint. Although the solver is

not a feature of conventional robot simulation tools, it is

incorporated in several CG tools, so we decided to use it for

planning the robot's posture instead of the usual IK.

Figure 4. Sample curve drawn by NURBS for the spline IK method.

4. Real-Time Simulation of Robots with

Flexible Arms

4.1. Building Environmental Mesh Objects from 3D

Point-Cloud Data

If the results of 3D measurements can be imported into the

VR environment on the fly, the efficiency of preparing

environmental models for remote operation support can be

improved. Here, a method for generating a mesh model for a

VR environment in a few minutes in the field was developed

based on 3D measured point-cloud data. Figure 5 shows the

point cloud obtained from 3D measurements conducted in a

test space enclosed by partitions that were used to verify the

operation of the robot in a narrow area. It is necessary to

subsample the point cloud to the order of 10
6
 points because

of the constraints of the development tool on its use in

real-time in the VR environment. The figure compares the

raw (total) point cloud data consisting of (a) 2x10
7
 points and

(b) 1x10
6
 subsampled data points. Shapes common to both

figures appear, but there is a gap between the points in the

data of (b) such that the wall seems transparent. Therefore, it

is necessary to generate a mesh model of the wall to prevent

the other side from being seen when the robot is close to it

and performs a collision check.

Figure 5. Comparison between raw and sub-sampled point-cloud data for

mesh modeling.

A method to enlarge the faces of the mesh model is as

follows: select three points and connect them with

corresponding edges to form a face. Faces with similar normal

vectors to those of adjacent faces are consolidated (Figure 6).

To generate a mesh model, points of interest are selected from

the point-cloud data (S-1). N points around the point of

interest are chosen (S-2). For the chosen surrounding points, a

weighting factor is given according to its distance from the

point of interest (S-3). Then a face of the triangular mesh is set

around the point of interest with maximum angle θt, max, and

minimum angle θt, min (S-4). After the faces are generated, the

normal vectors of the faces are calculated (S-5), and if the

angle θn between two normal vectors is less than θn, max, the

two normal vectors are considered similar, and the surfaces

are merged (S-6). The above process is iterated to the

maximum number of point-cloud data (S-7).

Figure 6. Flowchart of modeling mesh from point-cloud data.

4.2. Visualization of Moving Postures for Flexible Arms in a

Virtual Reality Environment

A CG model of a robot was created using a commercially

available CG tool (Maya, Autodesk Inc. [20]). In Figure 7,

the metal plate springs that cover the flexible arms are

removed, and the internal structure is illustrated. There are

sets of hydraulically driven pistons. Each set consists of four

pistons and cylinders and tubes that inject and discharge

water. The flexible arm can be bent in three dimensions by

adjusting the amount of water injected into the cylinders.

Q0

Q1 Q2

Q3

Q5

Control points

Q4
Points on

the curve

Nearest control points attract

the points on the NURBS curve

Virtual skeleton of the arm
with NURBS curve

Point of interest

Normal-vector
θn<θn,maxθt,max

θt,min

Compute vectors from point of interest

to surrounding points(S-2)

Set weights depending on distances from

the point of interest(S-3)

Set the point of interest (S-1)

Generate triangle with conditions of

θt,max and θt,min (S-4)

Generate normal vectors (S-5)

Merge triangles which have similar

normal vectors within θn,max (S-6)

Interest points < Maximum points

Start

End

(S-7)

Yes

No

94 Hiroshi Seki et al.: Real-time Simulation Methods for Robots with a Flexible

Arm Based on Computer Graphics Technology

Each arm set can be bent up to 45 degrees relative to each of

the x-, y-, and z-axes. Since the arm consists of an upper part

and a forearm, it can bend up to 90 degrees relative to each

axis. Therefore, by using a simple operation method with the

spline IK solver, each piston is set to bend to the average of

up to 45 degrees, and the ball joints connect pistons to bend

two parts before and after each joint, it sets the constraint to

be bent upwards to 22.5 degrees in each piston alone.

Figure 7. Simulation of movement for pistons and water tubes in the flexible

arm.

4.3. Collision Detection of Arms Objects with Environmental

Meshes

Figure 8 shows the model used to check for collisions

between the robot and objects in the area that it will be

working in. A real-time physics computation engine

(open-source NVIDIA PhysX) is used for checking collisions

[21]. Mesh with a geometric shape, called a mesh collider (the

green wire frame part of the diagram) is used for detecting

collision events. We decided that the mesh collider should be

composed of simple geometric shapes to reduce the colliding

portions and events because the processing becomes heavy

when the mesh of the colliding body precisely matches the

shape of part of the robot. Moreover, the robot’s mesh collider

was displaced 10 mm upward relative to the floor plane

because the floor surface generated from the measured 3D

point cloud data has an error of about several millimeters, and

if the mesh collider remains in continuous contact with the

floor, a state of collision persists. This robot VR application

can be used for calculating the duration of the operation for the

robot as well as recognizing the self-position of the actual

robot from various three-dimensional views.

Figure 8. Geometric shapes for detecting collisions with a mesh collider

based on PhysX engine.

The relationship between the CG model of the robot and the

operational parts is shown in Figure 9. The flexible arm and

column can move relative to the chassis of the robot as follows:

swing 1 moves the column upwards through an angle, turn 1

rotates swing 1, swing 2 moves the flexible arm downwards

through an angle, swing 3 moves the hand end effector

downwards through an angle, suspension contracts the

hand-end effector, and turn 2 rotates the hand end effector.

These operational parts of the arm can be bent up to 90

degrees in four directions (bend_up, bend_down, bend_left,

and bend_right).

Figure 9. Parameters for operating the robot with a flexible arm.

5. Results and Discussion

5.1. Generating a Mesh Model from a Point-Cloud

As mentioned in section 4.1, the maximum number of

meshes should be limited to 10
6
 for a VR simulation to be

carried out in real-time. To confirm this condition is

practically achievable, the quality of the generated mesh

models was evaluated in comparison with the processing time

to generate the model.

An example of a mesh model generated from the point

cloud data is shown in Figure 10. Figure 10 (a) shows the

registration results of point-cloud data obtained by 3D laser

scanning of three locations in a field test. It consists of 2.7x10
7

points. Figures 10 (b) and (c) show mesh models obtained

from 10
6
 and 10

7
 of those points. In these models, the meshes

of the wall do not appear transparent as the red cone in Figure

10 (a) when the robot is close to the obstacle and can be

visualized as an obstacle. The number of mesh faces in each

case is 1.9x10
6
 and 1.8x10

7
, and it is easy to see that the

surfaces match those in the raw data.

Figure 10. Comparison of mesh models and corresponding point cloud data.

Figure 11 shows the time it takes to generate the mesh model

from the point cloud data. It took 2 minutes to complete the

 International Journal of Mechanical Engineering and Applications 2021; 9(6): 90-97 95

processing of 10
6
 points that were sub-sampled from the raw

point-cloud data. When 10
5
 points were obtained by the laser

range finder (LRF) mounted on the robot, the model was

completed in 20 seconds. When 10
7
 points were used, it took 6

hours to make the model. Therefore, the processing time

increased in proportion to the square of the number of points.

If processing data can be done offline, 10
7
 points could be used,

and it would be possible to simulate in an environment model

made of relatively smooth geometric shapes. However, in the

field, it would be desirable to capture the mesh model within a

few minutes of making a 3D measurement. Therefore, we

consider that 10
6
 points of point-cloud data are a practical limit

regarding the processing time of the mesh model.

Figure 11. Relationship between mesh model size from point-cloud data and

its generation time.

The screen update speed of the simulation was verified in

the case of using a mesh model generated from large-scale

point-cloud data. The verification used a PC equipped with an

Intel Xeon ES-2603, 1.6 GHz 2CPU. The VR simulation of

the mesh model generated from 10
7
 points had a screen update

speed of 1-2 frames per second; thus, a mesh model of this size

is not suitable for real-time operation. It is said that the screen

update speed for real-time operation should be 30 frames per

second or more. When the mesh model was generated from

10
6
 points, the screen update speed in the VR simulation was

60 frames per second. Consequently, 10
6
 point-cloud data was

determined to be adequate for the VR simulation.

If the number of points is decreased, the geometric shape of

the resulting mesh model will be of inferior quality, as shown in

Figure 10 (b). We thought that the quality of the geometric

shapes could be improved by adjusting the parameters when the

mesh is generated. Figure 12 shows the relationship between

the number of meshes generated with Ks points to be searched

in the vicinity of the point of interest at the time of calculation

and the number of generated faces. The characteristics of a cone

mesh model were examined for various values of Ks. The

diameter of the bottom of the conical shape was 278 mm and it

corresponds to the maximum size of small-bore piping

components that would be cut and removed during

decommissioning. Therefore, the cone was a reasonable size for

this evaluation. Ks is a parameter that determines the

complexity of the mesh shape that can be generated in the

vicinity of a particular point. The number of generated

geometric faces tends to increase as Ks increases, but the growth

rate tends to saturate beyond a certain value of Ks. This

tendency appears when there are fewer points in the

neighborhood, and the resulting shape depends greatly on

which points are chosen. When Ks is 20, the cone appears

incomplete with numerous fractures. When Ks is 50 and 100,

the cone is more complete and has fewer fractures. Moreover, it

is not efficient to increase this Ks more than necessary; it takes

18 minutes or more when Ks is 1000 but only 4 minutes when

Ks is 100. Thus, Ks should be set from 50 to 100 to generate

mesh models of equipment or piping components with many

changes in the generated shapes. With the developed method,

we confirmed that it connects meshes based on the similarity of

normal vectors to mesh planes generated from neighboring

point-cloud data to reproduce equipment and piping shapes

compared with the previous study [16].

Figure 12. Quality of generated meshes.

5.2. Checking the Collision Detection Function of the Robot

in the Mesh Model

Figure 13 shows the superimposed movement locus of the

center coordinates of the crawler as blue points on the

point-cloud data. The white square on the floor shows an area of

80 cm × 80 cm. This VR application can be used to confirm the

coordinates 180 seconds after arrival at the endpoint of the

center of the crawler, and 20 seconds after the start of the

movement. Moreover, it can be used to confirm the posture of

the robot with the 3D isometric display. Therefore, the collision

detection function enables users to confirm the postures of the

robot even if the camera views are occluded by obstacles.

Figure 13. Trajectory of the robot in the field test.

Figure 14 shows how the robot hand detects rubble and its

96 Hiroshi Seki et al.: Real-time Simulation Methods for Robots with a Flexible

Arm Based on Computer Graphics Technology

contact situation. The situation at the moment of contacting

the rubble was able to be detected from the posture. When a

collision event was detected, the amount of processing

temporarily increased; consequently, the screen was updated

at about 30 frames per second, i.e., about half that of a

situation with no collision. Therefore, it was found that 60

frames per second or more is a desirable update speed when no

collision occurs. With the developed method, we confirmed

that it connects meshes based on the similarity of normal

vectors to mesh planes generated from neighboring

point-cloud data to reproduce equipment and piping shapes

compared with the previous study [16].

Figure 14. Example posture of robot with flexible arm avoiding collisions

against obstacles.

5.3. Evaluation of Moving Time of the Robot

Figure 15. Recorded time of the movement and the changes in angle of the

flexible arm of the robot.

Figure 15 shows the recorded times of movements and

changes in the angle of the flexible arm. By changing the angle

of the arm (swing 1 to swing 3, bend_left, up, down, and right)

at a rate of 10 degrees per second, the manual operation took

130 seconds to grasp and remove rubble. It took a total of 13

operation steps to contact the rubble from the moment that the

rubble was recognized, and the operator completed the

movements (while looking at the screen) about three times

faster than the actual robot’s operation. This means that the

planned operation can be checked more quickly with the VR

application than with the actual robot hardware in a mockup

field test. In addition, the difference between the start and the

end of a series of operations can be assigned as the duration of

the actual scheduled activity.

The mesh is very coarse when the number of points is small,

as shown in Figure 10 (b), because the normal vectors of the

triangular mesh formed by the edge between points and the

surface are not smoothed or optimized in the VR environment.

The simulation in the VR environment used such a coarse

mesh model because its purpose was to detect collision events.

In contrast, more detailed simulations that incorporate the

mechanical stability of the center of gravity of the robot on

unstable surfaces, lifting of the object to be removed, and

dynamics such as multi-legged walking will require more

sophisticated processing such as smoothing of the mesh,

repairing splits in the mesh surface, or replacing the

point-cloud based mesh with a 3D CAD model. In the future,

we will build mesh models that can be used for dynamics

simulations. In addition, we will use the calculated duration in

this VR environment as input for the schedule optimization

system. In this way, we will develop a schedule optimization

technology that checks and updates the duration of an activity

in the planned schedule corresponding to various operating

scenarios.

6. Conclusions

A support system of a robot operated remotely for high

dose-rate environments plays a crucial role during

decommissioning of NPPs. Before deploying

remote-controlled robots to a site, it is necessary to confirm

that the operation plans are safe and efficient. In this research,

we developed the technology necessary to calculate the

working duration by checking that the robot operates without

colliding with obstacles, such as equipment and piping

components on floors and walls, in a virtual environment made

of a mesh model built from 3D point-cloud measurements.

A method that enlarges face surfaces was investigated to

generate mesh models efficiently. It generates triangular by

selecting three points for each face and consolidating nearest

surfaces which have normal vectors in similar directions as

one face. The appropriate number of point cloud data and

parameters used for generating mesh models were evaluated

by examining the quality of the generated mesh model as

well as the processing time. As for the point cloud data, a 5 m

x 5 m test field enclosed by partitions for testing the

behaviors of the robot in a narrow space was measured with a

3D scanner.

As a result of the evaluation, it was decided to generate

mesh models from point cloud data consisting of 10
6
 points,

with which the operator’s screen can be refreshed at 60

frames or more per second. The number of points to be

searched in the vicinity of a point of interest should be set

from 50 to 100 for generating faces with fewer cracks. In this

case, the calculation time was less than two minutes.

As for detecting collisions, a CG model of a robot with a flexible

arm was made and collisions with obstacles were detected by

 International Journal of Mechanical Engineering and Applications 2021; 9(6): 90-97 97

simplifying the mesh shapes including that of the robot.

With the developed functions, we confirmed that the

movement trajectory of the robot and a three-dimensional

isometric display from an arbitrary camera angle can be

visualized by using the mesh model as the environment model

of the robot. In addition, we confirmed that the moment of

contact with rubble can be detected and displayed. The speed

at which the user operates while looking at the screen is faster

than the actual robot's angular change. By using this VR

application instead of an actual hardware robot, work planning

can be substantially shortened. The difference between the

start and end times of a series of operations conducted in the

VR environment can be scheduled as the duration of the actual

working activity.

Acknowledgements

I would like to thank Professor Satoshi Tadokoro of

Tohoku University for his constructive suggestions.

References

[1] Schmittem, M. (2016). Nuclear decommissioning in Japan:
Opportunities for European companies. EU–Japan Centre for
Industrial Cooperation.

[2] Grossi, P., Segabinaze, R., Tello, C., and Daniška, V. (2013).
Cost estimation for decommissioning of research reactors.
2013 International Nuclear Atlantic Conference. ISBN
978-85-99141-05-2.

[3] Szőke, I., Louka, M., Bryntesen, T., Edvardsen, S. and Bratteli,
J. (2015). Comprehensive support for nuclear
decommissioning based on 3D simulation and advanced user
interface technologies. Journal of Nuclear Science and
Technology, 2015, 52, 371–387.

[4] Ohga, Y., Fukuda, M., Shibata, K., Kawakami, T. and
Matsuzaki, T. (2005). A system for the calculation of radiation
field for maintenance support in nuclear power plants.
Radiation Protection Dosimetry. 116, 592-596.

[5] Lee, J., Kim, G., Kim, I., Hyun, D., Jeong, K., Choi, B., and
Moon, J. (2016). Establishment of the framework to visualize
the space dose rates on the dismantling simulation system
based on a digital manufacturing platform. Annals of Nuclear
Energy, 95, 161-167.

[6] Kim, I., Choi, B., Hyun, D., Moon, J., Lee, J., Jeong, K. and
Kang, S. (2016). A framework for a flexible cutting-process
simulation of a nuclear facility decommission. Annals of
Nuclear Energy, 2016, 97, 204-207.

[7] Nonaka, Y., Yamamoto, E., Oya, K., Enomoto, A. and Seki, H.
(2016). Development of IT-driven power plant engineering
work support systems. Hitachi Review, 65, 963-968.

[8] Seki, H., Imamura, M., and Nagase, H. (2020). Evaluating
Precise Quantity of Decommissioning Waste by Cutting Virtual
3D Models of Large Equipment. Nuclear Science, 5, 36-43.

[9] Okada, S., Hirano, K., Kobayashi, R., and Kometani, Y. (2020).
Development and Application of Robotics for
Decommissioning of Fukushima Daiichi Nuclear Power Plant.
Hitachi Review, 69, 562–563.

[10] Thuruthel, T., Ansari, Y., Falotico, E., and Laschi, C. (2018).
Control strategies for soft robotic manipulators: A survey. Soft
robotics, 5, 149-163.

[11] Andaluz, V., Chicaiza, F., Gallardo, C., Quevedo, W., Varela, J.,
Sánchez, J., and Arteaga, O. (2016). Unity3D-MatLab
simulator in real time for robotics applications. International
Conference on Augmented Reality, Virtual Reality and
Computer Graphics, 9768, 246-263.

[12] Besset, P., and Taylor, C. (2014). Inverse kinematics for a
redundant robotic manipulator used for nuclear
decommissioning. UKACC International Conference on
Control (CONTROL), IEEE, 56-61.

[13] Borboni A., Bussola R., Faglia R., Magnani P., Menegolo A.
(2008). Movement optimization of a redundant serial robot for
high-quality pipe cutting. J Mech Design, 130 (8): 0823011 1-6.

[14] Pin, F., Love, L., and Jung, D. (2004). Automated kinematic
equations generation and constrained motion planning
resolution for modular and reconfigurable robots. In
Proceedings of the 227th ACS National Meeting.

[15] Shoji, K. (2017). Possibility of applying large-scale point
cloud/mixed reality technology in decommissioning of nuclear
facilities. Dekomisshoningu Giho, 55, 8-21.

[16] Li, T., Wang, J., Liu, H., and Liu, L. (2017). Efficient mesh
denoising via robust normal filtering and alternate vertex
updating. Frontiers of Information Technology and Electronic
Engineering, 18, 1828-1842.

[17] Unity Technologies. (2020). Optimizing graphics performance,
https://docs.unity3d.com/Manual/OptimizingGraphicsPerform
ance.html.

[18] Ramanagopal, M., Nguyen, A., and Ny, J. (2017). A motion
planning strategy for the active vision-based mapping of
ground-level structures. IEEE Transactions on Automation
Science and Engineering, 15, 356-368.

[19] Shi, X., Fang, H., and Guo, L. (2016). Multi-objective optimal
trajectory planning of manipulators based on quintic NURBS.
IEEE International Conference on Mechatronics and
Automation, IEEE, 759-765.

[20] Autodesk, Inc., Maya | Computer Animation & Modelling
Software | Autodesk,
https://www.autodesk.com/products/maya/overview.

[21] NVIDIA, Inc., NVIDIA PhysX Software System,
https://www.nvidia.com/en-us/drivers/physx/physx-9-19-0218
-driver/.

